Triton-B Catalyzed Efficient One-Pot Synthesis of Dithiocarbamate Esters⁺

Devdutt Chaturvedi^{*,#} and **Suprabhat Ray**

Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow-226001, India

Received June 30, 2005; accepted August 9, 2005 Published online February 27, 2006 © Springer-Verlag 2006

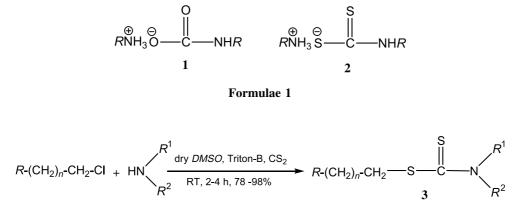
Summary. A novel process for the one-step chemoselective conversion of alkyl halides into dithiocarbamates as protected amines was developed using benzyltrimethylammonium hydroxide (Triton-B) in presence of carbon disulfide. Thus, dithiocarbamates of different amines were prepared in very good to excellent yields. This protocol is mild, chemoselective, and efficient compared to other methods.

Keywords. Triton-B; Carbon disulfide; Alkyl halides; Amines; Thiocarbamation.

Introduction

The importance of dithiocarbamates in organic chemistry, including agrochemicals [1], pharmaceuticals [2], intermediates in organic synthesis [3], protection of amino groups in peptide synthesis [4], linkers in solid phase organic synthesis [5], radical precursors in free radical chemistry [6], and recent use in the synthesis of ionic liquids [7], necessitates their preparation by a convenient and safe methodology. To satisfy this demand, their synthesis has been changed from the use of harmful and toxic chemicals like dithiophosgene [8] and its derivatives [9] directly or indirectly, to abundantly available, cheap, and safe reagents like CS₂. However, their formation from CS₂ employed harsh reaction conditions, such as strong bases, high reaction temperatures, and long reaction times [10]. Thus, we were prompted to embark on improved procedures. Our group [11] has been engaged for several years in the development of new methodologies for the synthesis of carbamates and dithiocarbamates. Recently, we have reported [12] a chemoselective, highly efficient, one-pot, novel synthesis of carbamates from alkyl halides using the

^{*} Corresponding author. E-mail: ddchaturvedi002@yahoo.co.in


[#] Present address: Institute of Organic and Biomolecular Chemistry, Georg–August University, D-37077 Göttingen, Germany

⁺ CDRI Communication No.: 6189; this paper is dedicated to Dr. *N. Anand*, Former Director CDRI, on his 80th birthday

Triton- B/CO_2 system. In the present communication, we report a chemoselective, highly efficient, one-pot, synthesis of *N*-alkyl/aryl dithiocarbamates of different amines from alkyl halides using the Triton- B/CS_2 system.

Results and Discussion

We have recently assumed [12] that two equivalents amine reacted with CO_2 to form ionic species 1, *i.e.* the monoalkylammonium alkyl carbamate ion (Formulae 1). It has been observed that the nucleophility of **1** could be enhanced by a basic phase transfer catalyst like Triton-B. This ionic species 1 gets stabilized in the presence of the phase transfer catalyst and would react with alkylating agents to afford carbamates in high yields. By adopting a similar approach, the monoalkyl ammoniumalkyl dithiocarbamate ion 2 should be formed by reacting two molar equivalents of amine with CS_2 . The nucleophilic S of ion 2 would then attack the electrophilic carbon of alkylating agents, i.e. the alkyl halides. Moreover, due to the higher reactivity of CS₂ as compared to CO₂ the reaction was tried at room temperature and the proposed product was obtained indeed. It was characterized by spectroscopic and analytical techniques. Thus, the amine was taken in organic solvent and reacted with CS₂ and alkyl halide in the presence of Triton-B at room temperature for 2–4 h to furnish the desired dithiocarbamate ester. We tried *n*-hexane, *n*-heptane, dichloromethane, chloroform, methanol, benzene, toluene, DMF, DMSO, HMPA, acetonitrile, and dry DMSO was found to be most suitable to get good to excellent yields. It is important to note that the amine used for this reaction should have at least one available hydrogen atom to help in the formation of ionic species 2. Furthermore, we have tried quaternary ammonium salts, like Triton-B, tetra-n-butylammonium iodide, tetra-n-butylammonium bromide, tetra*n*-butylammonium hydrogensulfate, tetra-*n*-butylammonium hydrogencarbonate, etc., but Triton-B was found to be most suitable to get good to excellent yields of dithiocarbamates of aliphatic, aromatic, and cyclic (primary and secondary) amines. Accordingly, the reaction condition for the synthesis of dithiocarbamates 3 from alkyl halides and amines using Triton- B/CS_2 system is shown in Scheme 1; the yields of the products are contained in Table 1.

Scheme 1

Product	R	R^1	R^2	n	Time/h	Yield/%
1a	2-Naphthyloxy	<i>n</i> -C ₄ H ₉	Н	3	2.5	97
1b	2-Naphthyloxy	<i>n</i> -C ₆ H ₁₃	Н	2	2.5	96
1c	2-Naphthyloxy	$n - C_8 H_{17}$	Н	1	3	94
1d	2-Naphthyloxy	$n-C_{12}H_{25}$	Н	3	2	98
1e	2-Naphthyloxy	Cyclohexyl	Н	2	3	89
1f	2-Naphthyloxy	$n-C_3H_7$	$n-C_3H_7$	2	3	85
1g	2-Naphthyloxy	$R^1 = R^2 = Morpholinyl$	- /	2	4	82
1h	2-Naphthyloxy	$R^1 = R^2 = Pyrrolidinyl$		2	4	83
1i	2-Naphthyloxy	C ₆ H ₅ CH ₂	Н	1	3.5	87
1j	2-Naphthyloxy		Н	3	2.5	97
1k	2-Naphthyloxy	$4-Me C_6H_4-$	Н	2	3.5	92
11	2-Naphthyloxy	$4-MeO C_6H_4-$	Н	2	3.5	93
1m	Ph	$n-C_4H_9$	Н	1	3.5	88
1n	Ph	<i>n</i> -C ₆ H ₁₃	Н	2	3	92
10	Ph	$i-C_3H_7$	<i>i</i> -C ₃ H ₇	1	3.5	81
1p	C_2H_5	$n - C_8 H_{17}$	Н	1	3	90
1q	$n-C_3H_7$	Cyclohexyl	Н	2	3	88
ı 1r	$n-C_4H_9$	3-Methoxybenzyl	Н	3	2.5	92
1s	<i>n</i> -C ₇ H ₁₅	<i>n</i> -C ₆ H ₁₃	Н	2	2.5	87
1t	$n-C_5H_{11}$	$4-MeO C_6H_4-$	Н	2	3.5	80
1u	Ph	$4-Me C_6H_4-$	Н	1	3.5	78

Table 1. Conversion of alkyl halides into dithiocarbamates of general formula 3

In conclusion, we developed a convenient, safe, and efficient protocol for a one-pot, four components coupling of various primary and secondary aliphatic/ aromatic and cyclic amines with alkyl halides *via* a Triton-B/CS₂ system. This highly chemoselective reaction generates the corresponding dithiocarbamates in good to excellent yields. Furthermore, this method exhibits substrate versatility, mild reaction conditions, and experimental convenience. This synthetic protocol is believed to offer a more general method of formation of carbon-sulfer bonds, essential to numerous organic syntheses.

Experimental

Chemicals were obtained from Merck, Aldrich, and Fluka chemical companies. IR spectra were obtained on a Bomem MB-104 FTIR spectrometer and ¹H NMR spectra were scanned on a AC-300F NMR (300 MHz) instrument using CDCl₃ as solvent and *TMS* as internal standard. Elemental analyses were made by Carlo-Erba EA1110 CHNO-S analyzer and agreed favourably with calculated values.

Procedure

A mixture of 6 mmol Triton-B and 6 mmol CS_2 was taken in 40 cm³ dry *DMSO* and was allowed to stir 20 min at room temperature. Amine (5 mmol) was added and the reaction was continued at rt for 1 h. Now 2 mmol of the corresponding chloro compound were added. The reaction was further continued until completion (*cf.* Table 1). The reaction mixture was poured into 50 cm³ distilled H₂O and extracted with ethyl acetate thrice. The organic layer was separated, dried (Na₂SO₄), and concentrated to get the desired compound.

[4-(2-Naphthyloxy)but-1-yl] n-butyldithiocarbamate (1a, C₁₉H₂₅NOS₂)

Yield 97%; IR (KBr): $\bar{\nu} = 670$ (C–S), 1114 (C=S), 1474 (Ar), 1510 (Ar), 1609 (Ar), 2874 (CH), 2937 (CH), 3418 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.93-0.97$ (t, CH₃), 1.30–1.34 (m, *CH*₂CH₃), 1.53–1.56 (m, *CH*₂CH₂CH₃), 1.70–1.72 (m, naphthyl-O–CH₂*CH*₂), 1.95–1.98 (m, S–CH₂*CH*₂), 2.0 (br, NH), 2.63–2.66 (m, NH*CH*₂), 2.84–2.88 (t, *CH*₂–S–C=S), 4.01–4.04 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 347.

3-(2-Naphthyloxy)prop-1-yl] n-hexyldithiocarbamate (**1b**, C₂₀H₂₇NOS₂)

Yield 96%; IR (KBr): $\bar{\nu} = 664$ (C–S), 1116 (C=S), 1474 (Ar), 1512 (Ar), 1601 (Ar), 2874 (CH), 2937 (CH), 3395 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.92-0.96$ (t, CH₃), 1.27–1.29 (m, *CH*₂*CH*₂CH₂CH₃), 1.30–1.34 (m, *CH*₂CH₃), 1.53–1.56 (m, *CH*₂CH₂CH₃), 2.2 (br, NH), 2.36–2.40 (m, naphthyl-O-CH₂*CH*₂CH₂-), 2.63–2.66 (m, NH*CH*₂), 2.83–2.87 (t, *CH*₂–S–C=S), 4.01–4.04 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 361.

2-(2-Naphthyloxy)eth-1-yl] n-octyldithiocarbamate (1c, C₂₁H₂₉NOS₂)

Yield 94%; IR (KBr): $\bar{\nu} = 662$ (C–S), 1109 (C=S), 1464 (Ar), 1512 (Ar), 1604 (Ar), 2864 (CH), 2927 (CH), 3391 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.93-0.96$ (t, CH₃), 1.27–1.29 (m, *CH*₂*CH*₂*CH*₂*CH*₂CH₂CH₃), 1.30–1.34 (m, *CH*₂CH₃), 1.53–1.56 (m, *CH*₂CH₂N), 2.1 (br, NH), 2.64–2.66 (m, NH*CH*₂), 3.27–3.30 (t, *CH*₂–S–C=S), 4.70–4.72 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 375.

4-(2-Naphthyloxy)but-1-yl] n-dodecyldithiocarbamate (1d, C₂₇H₄₁NOS₂)

Yield 98%; IR (KBr): $\bar{\nu} = 683$ (C–S), 1154 (C=S), 1474 (Ar), 1524 (Ar), 1610 (Ar), 2890 (CH), 2937 (CH), 3398 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.91-0.94$ (t, CH₃), 1.27-1.29 (m, $CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$), 1.30-1.34 (m, CH_2CH_3), 1.53-1.56 (m, CH_2CH_2N), 1.70-1.72 (m, naphthyl-O-CH₂CH₂), 1.95-1.98 (m, S-CH₂CH₂), 2.2 (br, NH), 2.63-2.66 (m, NHCH₂), 2.84-2.88 (t, CH_2 -S-C=S), 4.01-4.04 (t, CH_2 -O-naphthyl), 6.97-7.64 (m, Ar-H) ppm; MS: m/z = 459.

[3-(2-Naphthyloxy)prop-1-yl] cyclohexyldithiocarbamate (1e, C₂₀H₂₅NOS₂)

Yield 89%; IR (KBr): $\bar{\nu} = 670$ (C–S), 1105 (C=S), 1465 (Ar), 1510 (Ar), 1609 (Ar), 2864 (CH), 2937 (CH), 3402 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.41-1.44$ (m, CH₂), 1.62–1.66 (m, CH₂), 2.1 (br, NH), 2.35–2.38 (m, naphthyl-O–CH₂CH₂CH₂–S–C=S), 2.56–2.58 (m, CH), 2.63–2.66 (m, NHCH₂), 2.83–2.87 (t, CH₂–S–C=S), 4.01–4.04 (t, CH₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 359.

[3-(2-Naphthyloxy)prop-1-yl] diisopropyldithiocarbamate (**1f**, C₂₀H₂₇NOS₂)

Yield 85%; IR (KBr): $\bar{\nu} = 669$ (C–S), 1116 (C=S), 1464 (Ar), 1512 (Ar), 1610 (Ar), 2864 (CH), 2927 (CH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.92-0.96$ (t, CH₃), 1.44–1.46 (m, *CH*CH₃), 2.36–2.40 (m, naphthyl-O–CH₂*CH*₂-S–C=S), 2.54–2.56 (m, *CH*₂N), 2.83–2.87 (t, *CH*₂–S–C=S), 4.01–4.04 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 361.

3-[(2 Naphthyloxy)prop-1-yl] 4-morpholinyldithiocarboxylate (1g, C₁₈H₂₁NO₂S₂)

Yield 84%; IR(KBr): $\bar{\nu} = 671$ (C–S), 1129 (C=S), 1477 (Ar), 1528 (Ar), 1610 (Ar), 2884 (CH), 2937 (CH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.34-2.38$ (m, naphthyl-O–CH₂CH₂CH₂-), 2.83–2.87 (t, S–CH₂), 2.89–2.93 (m, NCH₂), 3.65–3.69 (t, –OCH₂-), 4.05–4.09 (t, CH₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 347.

[3-(2-Naphthyloxy)prop-1-yl] 1-pyrrolidinyldithiocarboxylate (**1h**, C₁₈H₂₁NOS₂) Yield 83%; IR (KBr): $\bar{\nu} = 673$ (C–S), 1126 (C=S), 1474 (Ar), 1522 (Ar), 1606 (Ar), 2884 (CH), 2937 (CH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.58-1.60$ (m, CH₂), 2.35–2.38 (m, naphthyl-O–

CH₂*CH*₂CH₂–S–C=S), 2.8 (t, *CH*₂N), 2.83–2.87 (t, *CH*₂–S–C=S), 4.01–4.04 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 331.

2-(2-Naphthyloxy)eth-1-yl] benzyldithiocarbamate (1i, C₂₀H₁₉NOS₂)

Yield 87%; IR (KBr): $\bar{\nu} = 660$ (C–S), 1110 (C=S), 1463 (Ar), 1511 (Ar), 1603 (Ar), 2864 (CH), 2927 (CH), 3384 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.0$ (br, NH), 3.28–3.30 (t, *CH*₂–S–C=S), 3.90–3.92 (d, benzylic proton), 4.70–4.72 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H of naphthyloxy and benzyl) ppm; MS: m/z = 353.

[4-(2-Naphthyloxy)but-1-yl] (3-phenylpropyl)dithiocarbamate (1j, C₂₄H₂₇NOS₂)

Yield 97%; IR (KBr): $\bar{\nu} = 693$ (C–S), 1139 (C=S), 1488 (Ar), 1537 (Ar), 1629 (Ar), 2884 (CH), 2949 (CH), 3429 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.70-1.72$ (m, naphthyl-O–CH₂*CH*₂), 1.87–1.89 (m, PhCH₂*CH*₂ CH₂NH), 1.95–1.98 (m, S–CH₂*CH*₂), 2.2 (br, NH), 2.55–2.57 (t, Ph*CH*₂), 2.65–2.67 (m, PhCH₂CH₂CH₂–N), 2.85–2.87 (t, *CH*₂–S–C=S), 2.98–3.00 (m, *CH*₂NH), 4.01–4.04 (t, *CH*₂–O-naphthyl), 6.97–7.64 (m, Ar–H) ppm; MS: m/z = 409.

[3-(2-Naphthyloxy)prop-1-yl] 4-toluedinyldithiocarbamate (1k, C₂₁H₂₁NOS₂)

Yield 92%; IR (KBr): $\bar{\nu} = 660$ (C–S), 1095 (C=S), 1449 (Ar), 1504 (Ar), 1604 (Ar), 2860 (CH), 2927 (CH), 3380 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.33-2.35$ (s, CH₃), 2.36–2.40 (m, naphthyl-O–CH₂CH₂CH₂–S–C=S), 2.83–2.87 (t, CH₂–S–C=S), 4.0 (br, NH), 4.01–4.04 (t, CH₂–O-naphthyl), 6.34–7.64 (m, Ar–H) ppm; MS: m/z = 367.

[3-(2-Naphthyloxy)prop-1-yl] 4-anisidinyldithiocarbamate (11, C₂₁H₂₁NO₂S₂)

Yield 93%; IR (KBr): $\bar{\nu} = 669$ (C–S), 1119 (C=S), 1471 (Ar), 1522 (Ar), 1612 (Ar), 2877 (CH), 2939 (CH), 3398 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.36-2.40$ (m, naphthyl-O–CH₂CH₂CH₂–S–C=S), 2.83–2.87 (t, CH₂–S–C=S), 3.73 (s, OCH₃), 4.1 (br, NH), 4.01–4.04 (t, CH₂–O-naphthyl), 6.35–7.64 (m, Ar–H) ppm; MS: m/z = 383.

(2-Phenylethyl) n-butyldithiocarbamate (1m, C₁₃H₁₉NS₂)

Yield 88%; IR (KBr): $\bar{\nu} = 659$ (C–S), 1086 (C=S), 1467 (Ar), 2884 (CH), 2927 (CH), 3398 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.89-0.93$ (t, CH₃), 1.28–1.34 (m, *CH*₂CH₃), 1.54–1.57 (m, *CH*₂CH₂CH₃), 2.2 (br, NH), 2.63–2.65 (m, *CH*₂NH), 3.18–3.20 (t, PhCH₂CH₂), 3.23–3.25 (t, PhCH₂), 7.08–7.21 (m, Ar–H) ppm; MS: m/z = 253.

(3-Phenylpropyl) n-hexyldithiocarbamate (1n, C₁₆H₂₅NS₂)

Yield 92%; IR (KBr): $\bar{\nu} = 669$ (C–S), 1116 (C=S), 1512 (Ar), 2864 (CH), 2937 (CH), 3408 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.88-0.92$ (t, CH₃), 1.28–1.30 (m, *CH*₂*CH*₂), 1.32–1.35 (m, *CH*₂CH₃), 1.54–1.57 (m, NHCH₂*CH*₂), 2.2 (br, NH) 2.27–2.29 (m, PhCH₂*CH*₂CH₂), 2.54–2.56 (t, Ph*CH*₂), 2.63–2.66 (t, *CH*₂NH), 2.84–2.86 (m, S–CS–NH–*CH*₂), 7.08–7.21 (m, Ar–H) ppm; MS: m/z = 295.

(2-Phenylethyl) diisopropyldithiocarbamate (10, C₁₅H₂₃NS₂)

Yield 81%; IR (KBr): $\bar{\nu} = 659$ (C–S), 1096 (C=S), 1502 (Ar), 2854 (CH), 2927 (CH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.90-0.94$ (t, CH₃), 1.43–1.45 (m, *CH*₂CH₃), 2.53–2.55 (t, N*CH*₂), 3.17–3.20 (t, PhCH₂*CH*₂), 3.24–3.26 (t, Ph*CH*₂), 7.08–7.21 (m, Ar–H) ppm; MS: m/z = 281.

n-Butyl *n*-octyldithiocarbamate (**1p**, C₁₃H₂₇NS₂)

Yield 90%; IR (KBr): $\bar{\nu} = 648$ (C–S), 1086 (C=S), 2864 (CH), 2917 (CH), 3388 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.89-0.92$ (t, CH₃), 1.26–1.30 (m, CH₂), 1.32–1.34 (m, *CH*₂CH₃), 1.54–1.57 (m, NH–CH₂*CH*₂), 1.93–1.96 (m, S–CH₂*CH*₂), 2.0 (br, NH), 2.63–2.65 (t, CH₂NH), 2.85–2.87 (t, *CH*₂S) ppm; MS: m/z = 261.

n-*Hexyl cyclohexyldithiocarbamate* (**1q**, C₁₃H₂₅NS₂)

Yield 88%; IR (KBr): $\bar{\nu} = 669$ (C–S), 1116 (C=S), 2864 (CH), 2927 (CH), 3395 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.90-0.94$ (t, CH₃), 1.26–1.30 (m, CH₂), 1.32–1.34 (m, *CH*₂CH₃), 1.42–1.44 (m, CH₂), 1.64–1.67 (m, CH₂), 1.94–1.96 (m, S–CH₂*CH*₂), 2.0 (br, NH), 2.56–2.58 (m, *CH*), 2.85–2.88 (t, CH₂) ppm; MS: m/z = 259.

n-Octyl (3-methoxybenzyl)dithiocarbamate (1r, C17H27NOS2)

Yield 92%; IR (KBr): $\bar{\nu} = 669$ (C–S), 1116 (C=S), 1512 (Ar), 2864 (CH), 2927 (CH), 3408 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.89-0.91$ (t, CH₃), 1.26–1.30 (m, CH₂), 1.32–1.34 (m, *CH*₂CH₃), 1.93–1.96 (m, S–CH₂*CH*₂), 2.0 (br, NH), 2.85–2.87 (t, *CH*₂–S), 3.72–3.74 (s, OCH₃), 3.90–3.93 (m, CH₂), 6.57–7.03 (m, Ar–H) ppm; MS: m/z = 325.

n-Decyl *n*-hexyldithiocarbamate (1s, C₁₇H₃₅NS₂)

Yield 87%; IR (KBr): $\bar{\nu} = 659$ (C–S), 1103 (C=S), 2851 (CH), 2917 (CH), 3398 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.90-0.94$ (t, CH₃), 1.26–1.30 (m, CH₂), 1.32–1.34 (m, *CH*₂CH₃), 1.54–1.56 (m, NHCH₂*CH*₂), 1.94–1.97 (m, S–CH₂*CH*₂), 2.2 (br, NH), 2.64–2.66 (m, NH*CH*₂), 2.87–1.89 (t, *CH*₂–S–CS–NH) ppm; MS: m/z = 317.

n-Octyl 4-anisidyldithiocarbamate (1t, C₁₆H₂₅NOS₂)

Yield 80%; IR (KBr): $\bar{\nu} = 668$ (C–S), 1115 (C=S), 1510 (Ar), 2860 (CH), 2927 (CH), 3387 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.89-0.93$ (t, CH₃), 1.26–1.30 (m, CH₂), 1.32–1.34 (m, *CH*₂CH₃), 1.93–1.96 (m, S–CH₂*CH*₂), 2.85–2.88 (t, S–*CH*₂), 3.73 (s, OCH₃), 4.1 (br, NH), 6.35–6.52 (m, Ar–H) ppm; MS: m/z = 311.

(2-Phenylethyl) 4-toluedinyldithiocarbamate (1u, C₁₆H₁₇NS₂)

Yield 78%; IR (KBr): $\bar{\nu} = 673$ (C–S), 1126 (C=S), 1522 (Ar), 2874 (CH), 2947 (CH), 3408 (NH) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.34-2.36$ (s, CH₃), 3.19–3.22 (t, SCH₂CH₂·Ph), 3.23–3.26 (t, S–CH₂CH₂Ph), 4.0 (br, NH), 6.34–7.21 (m, Ar–H) ppm; MS: m/z = 287.

Acknowledgements

The authors are grateful to SIAF division of CDRI for providing the spectroscopic and analytical data.

References

- [1] a) Rafin C, Veignie E, Sancholle M, Postal D, Len C, Villa P, Ronco G (2000) J Agric Food Chem
 48: 5283; b) Len C, Postal D, Ronco G, Villa P, Goubert C, Jeufrault E, Mathon B, Simon H (1997) J Agric Food Chem 45: 3; c) Casanova M, Guichan R (1988) J Environmental Sci Health B B23: 179
- [2] a) Tripathi RP, Khan AR, Setty BS, Bhaduri AP (1996) Acta Pharm 46: 169; b) Ranise A, Spallarossa A, Schenone S, Burno O, Bondavalli F, Vargiu L, Marceddu T, Mura M, Colla PL, Pani A (2003) J Med Chem 46: 768; c) Cao SL, Feng YP, Jiang YY, Liu SY, Ding GY, Li RT (2005) Bioorg Med Chem Lett 15: 1915
- [3] a) Tsuboi S, Takeda S, Yamasaki Y, Sakai T, Utka M, Ishida S, Yamada E, Hirano J (1992) Chem Lett 8: 1417; b) Katrizky AR, Singh S, Mahapatra PP, Clemense N, Kirichenko K (2005) ARKIVOC 9: 63
- [4] Greene TW, Wuts PGM (1999) Protecting Groups in Organic Synthesis, 3rd Edition, Wiley Interscience New York 484
- [5] Bongar BP, Sadavarte VS, Uppalla LS (2004) J Chem Res Syn 9: 450
- [6] a) Crich D, Quintero L (1989) Chem Rev 89: 1413; b) Barton DHR (1992) Tetrahedron 48: 2529;
 c) Zard SZ (1997) Angew Chem Int Ed Engl 36: 672

- [7] Zhang D, Chen J, Liang Y, Zhou H (2005) Synthetic Commun 35: 521
- [8] Burke JTR, Bajwa BS, Jacobsen AE, Rice KC, Streaty RA, Klee WA (1984) J Med Chem 27: 1570
- [9] Walter W, Bode KD (1967) Angew Chem Int Ed Engl 6: 281
- [10] a) Dunn AD, Rudorf WD (1989) Carbon Disulphide in Organic Chemistry, Chinchester, UK, 226; b) Garin J, Melandz E, Merchain FL, Tejero T, Urid S, Ayestaron J (1991) Synthesis 147
- [11] a) Chaturvedi D, Kumar A, Ray S (2002) Synthetic Commun **32**: 2651; b) a) Chaturvedi D, Kumar A, Ray S (2003) Tetrahedron Letters **44**: 7637; c) Ray S, Chaturvedi D (2004) Drugs of the Future **29**: 343; d) Ray S, Pathak SR, Chaturvedi D (2005) Drugs of the Future **30**: 161
- [12] a) Chaturvedi D, Ray S (2005) Monatsh Chem, in press